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Introduction

Up until this point, the modeling of discharge through wells have been thoroughly discussed. In these models,
wells are represented by a single point of some infinitesimal dimension (length, width, etc.). However, on a
small enough scale, wells are poor models for cases in which water enters or exits an aquifer over a significant
length. This is the case for such surface water features as canals, rivers, streams, etc. Line-sinks are used to
apply the source/sink effect of a well over a finite, linear length. Their use is explored in this project.

As discussed in section 6.8 of Applied Groundwater Mechanics by Professor Otto D. Strack, the complex
potential at complex location z in a field of uniform flow with a single line sink centered at z = 0 is:

Ωls =
σL

4π

{
(Z + 1) ln(Zj + 1)− (Z − 1) ln(Z − 1) + 2 ln

L

2
− 2

}
(1)

Where:
σ is the strength of the line sink (discharge density per length);
L is the linear length of the line-sink;
Z is a dimensionless value acting as a function of complex location z,
constructed from line-sink geometry, as shown in equation 2.

Z =
z − 1

2 (
2
z +

1
z)

1
2 (

2
z − 1

z)
(2)

Equation 2 uses symbols
1
z and

2
z to represent the beginning and end points of the line-sink, respectively.

If it’s end points are known, the length L of a line-sink can be calculated using the Pythagorean Theo-
rem.

L =

√
<(

2
z − 1

z)2 + =(
2
z − 1

z)2 (3)

Often, line-sink models provide more accurate approximations with increasing line-sink quantity. However,
each line-sink requires a separate term for complex potential. Considering n line-sinks in a field of uniform
flow of discharge Q0 oriented at angle α, ccw from the x+ axis, the expression for complex potential at point
z becomes:

Ω = −Q0ze
−iα +

n∑
j=1

σjLj
4π

{
(Zj + 1) ln(Zj + 1)− (Zj − 1) ln(Zj − 1) + 2 ln

Lj
2
− 2

}
+ C (4)

Where Z is solved for all n line-sinks at that point:

Zj =
z − 1

2 (
2
zj +

1
zj)

1
2 (

2
zj −

1
zj)

(5)

And C is an arbitrary constant solved by using head or discharge data at a reference location z0.

As the expressions for the effect of each line-sink on complex potential are quite lengthy, it becomes convenient

to express all knowns as a separate function, Λ, with complex location z, and line-sink geometry
1
z and

2
z as

arguments.

Λls

(
z,

1
zj ,

2
zj

)
=
Lj
4π
<
{

(Zj + 1) ln(Zj + 1)− (Zj − 1) ln(Zj − 1) + 2 ln
Lj
2
− 2

}
(6)
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With this newly defined Λ, equation 7 for the complex potential resulting from n line sinks becomes:

Ω = −Q0ze
−iα +

n∑
j=1

σjΛ
(
z,

1
zj ,

2
zj

)
+ C (7)

For convenience, an expression can also be created for the effects on complex potential from given non-line-
sink elements. This expression (Φg(z)) can incorporate terms for given wells, uniform flow, etc.

Considering uniform flow to be the only non-line-sink term, equation 7 becomes:

Ω =

n∑
j=1

σjΛ
(
z,

1
zj ,

2
zj

)
+ C + Ωg(z) (8)

I Complex Potential For Center Heads and Reference Point

I.1 Complex Potential With σ and Z

In a field of uniform flow with one line sink of strength σ and no other elements (wells), the complex potential

can be expressed as a function of Z. As shown in equation 2, Z has arguments
1
z and

2
z, which are also used

to calculate L in equation 3.

Ωls =
σL

4π

{
(Z + 1) ln(Zj + 1)− (Z − 1) ln(Z − 1) + 2 ln

L

2
− 2

}
(9)

I.2 System Matrix

If more than one line sink is used, Λ is substituted for the Z term, and equation 7 becomes a set expressions
of Ω(z) for n line-sinks. The Φg(z) is also used for given elements.

Ω(z) =



n = 1 : σΛ
(
z,

1
z,

2
z
)

+ C + Φg(z)

n = 2 : σ1Λ
(
z,

1
z1,

2
z1

)
+ σ2Λ

(
z,

1
z2,

2
z2

)
+ C + Φg(z)

n = 3 : σ1Λ
(
z,

1
z1,

2
z1

)
+ σ2Λ

(
z,

1
z2,

2
z2

)
+ σ3Λ

(
z,

1
z3,

2
z3

)
+ C + Φg(z)

n = n :
n∑
j=1

σjΛ
(
z,

1
zj ,

2
zj

)
+ C + Ωg(z)

(10)

In the event that the piezometric head at the center of each line-sink and at some reference point z0 is
known, it is possible to solve for the strengths of each line-sink using a system of equations (assuming
constant strength across sink-length). A matrix of knowns (b) and unknowns (A) will be used to solve the
strength of each line-sink as well as the arbitrary constant C. Given this single additional unknown element
for C, the length of b will always be m× 1 in size, where m is one plus the number of line sinks m = n+ 1.
This matrix of knowns is therefore symbolized bm. As heads are the argument of complex potential, this Φ
value is considered at each known line-sink center and the reference point to create bm.
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Φ(z) = <Ω(z) = <

 n∑
j=1

σjΛ
(
z,

1
zj ,

2
zj

)+ C + Φg(z) (11)

In order to create a matrix of unknowns A, bm must incorporate all knowns. Therefore, the discharge
potential resulting from given, non-line-sink elements is included.

bm = Φ(zm)− Φg(zm) : m = 1, ..., n+ 1 (12)

For bm, elements 1 through n are calculated at each of the n line-sink centers. The final element m = n+ 1,
is the discharge potential knowns at reference point z0

bm =

 Φ(
c
zm)− Φg(

c
zm) : m = 1, ..., n

Φ(z0)− Φg(z0) : m = n+ 1

(13)

The matrix of unknowns A is then created in which each element of a given row are the coefficients of the
unknowns to be solved using of m conditions by using the process shown in equation 10. The iterations
for n = 1, 2, 3 show that the coefficient of element 1 through n of any given row is the Λ of the associated
line-sink center. The last element of a given row is the coefficient of unknown constant C, which is 1 for all
conditions.

Am,j =


Λls

(
c
zm,

1
zj , 2,zj

)
: j = 1, ..., n

1 : j = n+ 1

(14)

The values of the unknowns are then solved and placed in column vector s.

s = A−1b (15)

Each of the first n single-element rows of s are the strengths of each line sink. The last single-element row
provides the value of the constant C.

sm =

 σm : m = 1, ..., n

C : m = n+ 1
(16)
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II Two Line Sinks, Well, Given Values

This approach to modeling with line-sinks is tested on an unconfined aquifer with the following elements
and properties:

1 well with withdrawal of Q = 800 m
3

day located at zw = 100m+ i100m;

Two line-sinks spanning from zs = −200m to ze = 200m, both with center heads of φc = 25m;

At reference point of z0 = 1000m, reference head is φ0 = 28m;

Uniform flow of Q0 = Qx0 = 0.4 m
2

day ;

Hydraulic conductivity of water-bearing soil of k = 10 m
day

II.1 Solving for Strengths and Constant

In order to solve for the strengths of both line-sinks as well as the arbitrary constant C, equation 11 is used
to create three conditions.

Φ(
c
z1) = <

[
σ1Λ

(
c
z1,

1
z1,

2
z1

)
+ σ2Λ

(
c
z1,

1
z2,

2
z2

)]
+ C + Φg(

c
z1)

Φ(
c
z2) = <

[
σ1Λ

(
c
z2,

1
z1,

2
z1

)
+ σ2Λ

(
c
z2,

1
z2,

2
z2

)]
+ C + Φg(

c
z2)

Φ(z0) = <
[
σ1Λ

(
z0,

1
z1,

2
z1

)
+ σ2Λ

(
z0,

1
z2,

2
z2

)]
+ C + Φg(z0)

The knowns of these conditions are clumped and used to create column-vector b.

b1 = Φ(
c
z1)− Φg(

c
z1)

b2 = Φ(
c
z2)− Φg(

c
z2)

b3 = Φ(z0)− Φg(z0)

The discharge potential for the unconfined aquifer is function of piezometric head.

Φ =
1

2
kφ2 (17)

The complex potential resulting from uniform flow is a function of complex location z and uniform flow
amount Qx0.

ΩUF = −Qx0z (18)

The complex potential resulting from withdrawal at the well is a function of complex location z, well location
zw, and withdrawal discharge Qw
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Ωw =
Qw
2π

ln(z − zw) (19)

Equations 17, 18 and 19 are used to determine values of b.

b =



1
2kφc

2 −<
[
−Qx0

c
z1 + Qw

2π ln(
c
z1 − zw)

]
1
2kφc

2 −<
[
−Qx0

c
z2 + Qw

2π ln(
c
z2 − zw)

]
1
2kφ0

2 −<
[
−Qx0z0 + Qw

2π ln(z0 − zw)
]


The matrix of unknowns, A is then populated according to equation 14.

A =


Λ
(
c
z1,

1
z1,

2
z1

)
Λ
(
c
z1,

1
z2,

2
z2

)
1

Λ
(
c
z2,

1
z1,

2
z1

)
Λ
(
c
z2,

1
z2,

2
z2

)
1

Λ
(
z0,

1
z1,

2
z1

)
Λ
(
z0,

1
z2,

2
z2

)
1


The column-vector of calculated values for unknowns s is then equated by multiplying the inverse of matrix
A by b as shown in equation 15. Column-vector s is rendered as follows for two line sinks:

s =

 7.8008
4.3231

776.9559


Interpreting these values for s yields the following results:

σ1 = 7.8008
m2

s

σ2 = 4.3231
m2

s

C = 776.9559
m3

s

II.2 Verification of Piezometric Heads

After solving for the sinks, it needs to be verified that the piezometric heads at the points of concern (link-sink
centers and reference point) are indeed equal to given values.

By isolating φ in equation 17 for an unconfined aquifer, the piezometric head can be expressed as a function
of discharge potential.

φ =

√
2Φ

k
(20)

Discharge potential can be expressed as a function of z by considering the real part of complex poten-
tial.
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Φ(z) = <Ω(z) = <
[
σ1Λ

(
z,

1
z1,

2
z1

)
+ σ2Λ

(
z,

1
z2,

2
z2

)
+ C −Qx0z +

Qw
2π

(z − zw)

]
(21)

Equations 20 and 21 can be combined to express piezometric head as a function of complex location.

φ(z) =

√√√√2<
[
σ1Λ

(
z,

1
z1,

2
z1

)
+ σ2Λ

(
z,

1
z2,

2
z2

)
+ C −Qx0z + Qw

2π (z − zw)
]

k
(22)

This can be used to verify piezometric heads at all points of concern.

φ(
c
z1) =

√√√√2<
[
σ1Λ

(
c
z1,

1
z1,

2
z1

)
+ σ2Λ

(
c
z1,

1
z2,

2
z2

)
+ C −Qx0

c
z1 + Qw

2π (
c
z1 − zw)

]
k

= φc (23)

φ(
c
z2) =

√√√√2<
[
σ1Λ

(
c
z2,

1
z1,

2
z1

)
+ σ2Λ

(
c
z2,

1
z2,

2
z2

)
+ C −Qx0

c
z2 + Qw

2π (
c
z2 − zw)

]
k

= φc (24)

φ(z0) =

√√√√2<
[
σ1Λ

(
z0,

1
z1,

2
z1

)
+ σ2Λ

(
z0,

1
z2,

2
z2

)
+ C −Qx0z0 + Qw

2π (z0 − zw)
]

k
= φ0 (25)

Using this method, the piezometric heads are indeed confirmed.

φ(z) =


25m : z = −200m+ 0i

25m : z = 200m+ 0i

28m : z = 1000m+ 0i

(26)

II.3 Flow Through Canal

The volumetric discharge through a line-sink is the product of its strength and length.

Qls = σL (27)

In this project, for this step, a canal is modeled as two adjacent line sinks. The flows through each of these
line sinks Q1,ls and Q2,ls are calculated considering their strengths calculated in section II.1 and the lengths
they represent along the total canal.

Q1,ls = σ1L1 = 7.8008
m2

day
(−200m) = 1560.16

m3

day

Q2,ls = σ2L2 = 4.3231
m2

day
(−200m) = 864.62

m3

day

Qtotal = Q1,ls +Q2,ls = 1560.16
m3

day
+ 864.62

m3

day
= 2424.78

m3

day
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The positive sign of both σ1 and σ2 indicates that flow is occurring out of the canal. As L cannot logically
be negative, this sign convention also applies to discharge Qls. That is, in this case, the canal is withdrawing
water from the aquifer.

II.4 Flow Net and Piezometric Head Contours

The complex potential is calculated for a set of points composing a grid across the aquifer within the region
of interest. Figure 1 shows a Flow Net of this region, in which contours of constant Potential Discharge
Φ = <Ω are plotted in red, and contours of constant Streamlines Ψ = =Ω are plotted in blue.

In figure 2, just the potential discharge at each point of the region is considered and converted to piezometric
head using equation 20. Contours of constant head are then plotted using a color-coded gradient.
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Figure 1: Discharge Potential and Streamline Contours
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II.5 Flow Distributions

The sources of flow into or out of the aquifer are the canal, the well and uniform flow from infinity. The sum
of these flows can be expressed by obeying continuity.

Q∞ = Qw +

n∑
j=1

Qls,n (28)

Given that Q∞ is the only source of flow into the aquifer, both the well and line-sinks draw 100% of their
discharge from infinity.

III Line Sink Quantity and Accuracy

As seen in table 1, the value for discharge from the aquifer converges to approximately 2650 m
3

day with increasing
line-sinks used in the model. This is the increasingly precise value calculated for Qls

Quantity Qls(
m3

day )

1 2312.7
2 2424.8
3 2501.3
4 2538.7
5 2561.2
10 2605.9
20 2628.2
30 2635.6
40 2639.3
50 2641.6
100 2646.0
500 2649.6
1000 2650.0
2000 2650.2
3000 2650.3

Table 1: Line-sink quantity and increasingly precise discharge value
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IV Code

IV.1 Master Script

%%%%%%%%%%% CE 4352 Groundwater Modeling %%%%
%%%%%%%%%%%%% Pro j ec t 4 Master S c r i p t %%%%%%%%

c l e a r a l l
c l o s e a l l
c l c

d i spph i = 0 ; %d i s p l a y phi va lue s ? [ 1 = yes , 0 = no ]
f l ownet = 0 ; %d i s p l a y f l ownet ? [ 1 = yes , 0 = no ]
s i nk f l ow = 1 ; %d i s p l a y s ink in f l ow va lues ? [ 1 = yes , 0 = no ]
z e e s = 0 ; %d i s p l a y z va lue s ? [ 1 = yes , 0 = no ]
show s = 0 ; %show s va lues ? [ 1 = yes , 0 = no ]

%%% provided data %%%
Qw = 800 ; %we l l d i s cha rge [mˆ3/day ]
d = 100 ; %we l l l o c a t i o n value [m]
zw = complex (d , d ) ; %we l l l o c a t i o n
zs = complex(−2∗d , 0 ) ; %cana l extends from
ze = complex (2∗d , 0 ) ; %cana l extends to
z r e f = complex (1000 , 0 ) ; %r e f e r e n c e head l o c a t i o n
phi0 = 25 ; %p iezomtr i c head at both l i n e−s ink c e n t e r s [m]
p h i r e f = 28 ; %r e f e r e n c e p i e zomet r i c head [m]
Qx0 = 0 . 4 ; %uniform f low ra t e [m/day ]
k = 10 ; %hydrau l i c conduc t i v i ty [m/day ]

%%% l i n e−s ink l o c a t i o n s %%%
n = 3000 ; %number o f l i n e s i n k s
L = s q r t ( ( r e a l ( ze)− r e a l ( z s ) )ˆ2 + ( imag ( ze ) − imag ( zs ) ) ˆ 2 ) ;
zone = ze ro s (1 , n ) ;
ztwo = ze ro s (1 , n ) ;
zm = ze ro s (1 , n+1);
l o c = l i n s p a c e ( zs , ze , n+1);
f o r j = 1 : n
zone ( j ) = l o c ( j ) ;
ztwo ( j ) = l o c ( j +1);
zm( j ) = ( l o c ( j ) + l o c ( j +1))/2;
end
zm(n+1) = z r e f ;
i f z e e s == 1
di sp (’=======’);
d i sp ( ’ s t a r t po ints ’ ) ;
d i sp ( zone ) ;
d i sp (’=======’);
d i sp ( ’ end points ’ ) ;
d i sp ( ztwo ) ;
d i sp (’=======’);
d i sp ( ’ cente r s ’ ) ;
d i sp (zm ) ;
d i sp (’=======’);
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end
A = ze ro s (n+1, n+1);
f o r m =1:n+1
f o r j = 1 : n
A(m, j ) = Lambda(zm(m) , zone ( j ) , ztwo ( j ) ) ;
end
A(m, n+1) = 1 ;
end
b = ze ro s (n+1, 1 ) ;
f o r m = 1 : n
b(m, : ) = 0 .5∗ k∗phi0 ˆ2 + r e a l (Qx0∗zm(m))− r e a l ( (Qw/(2∗3 . 14 ) )∗ l og (zm(m)−zw ) ) ;
end
b(n+1 , :) = 0 .5∗ k∗ p h i r e f ˆ2 + r e a l (Qx0∗ z r e f )− r e a l ( (Qw/(2∗3 . 14 ) )∗ l og ( z r e f−zw ) ) ;
s = A\b ;
i f show s == 1 ;

d i sp ( s ) ;
end
i f d i spph i == 1
di sp (’=====’);
f o r j = 1 : n
d i sp ( ’ head o f s ink ’ ) ;
d i sp ( j )
d i sp ( phi (zm( j ) , s , zone , ztwo , Qx0 , Qw, zw ) ) ;
d i sp (’=====’);
end
d i sp ( ’ head o f r e f e r e n c e ’ ) ;
d i sp ( phi (zm(n+1) , s , zone , ztwo , Qx0 , Qw, zw ) ) ;
end
i f s i nk f l ow == 1
d i s p s i g = 0 ;
d i sp(’===========’);
f o r j = 1 : n
d i sp ( ’ i n f l ow f o r l i n e−s ink ’ ) ;
d i sp ( j )
d i sp ( s ( j )∗L/n ) ;
d i sp(’===========’);
d i s p s i g = s ( j ) + d i s p s i g ;
end
d i sp ( ’ combined in f l ow f o r a l l l i n e−s inks ’ ) ;
d i sp ( d i s p s i g ∗L/n ) ;
end

%%%%% Flow Net %%%%%%%%%
window = 500 ;
xfrom = −window ;
xto = window ;
yfrom = −window ;
yto = window ;
Nx = 400 ;
Ny = 400 ;
n int = 50 ;
i f f l ownet == 1
P4Q1ContourMe flow net ( xfrom , xto , Nx, yfrom , yto , Ny,
@( z )Omega( z , s , zone , ztwo , Qx0 , Qw, zw ) , n int ) ;
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a x i s ([−window window −window window ] ) ;
s e t ( gca , ’ FontSize ’ , 1 2 , ’ fontname ’ , ’ times ’ ) ;
t i t l e ( ’ Flow Net ’ , ’ FontSize ’ , 1 8 ) ;
ax = gca ;
ax . XTick = [−500 ,−400 ,−300 ,−200 ,−100 ,0 ,100 ,200 ,300 ,400 ,500] ;
ax . YTick = [−500 ,−400 ,−300 ,−200 ,−100 ,0 ,100 ,200 ,300 ,400 ,500] ;
hold o f f
P4Q2ContourMe flow net ( xfrom , xto , Nx, yfrom , yto , Ny,
@( z )Omega( z , s , zone , ztwo , Qx0 , Qw, zw ) , n int ) ;
s e t ( gca , ’ FontSize ’ , 1 2 , ’ fontname ’ , ’ times ’ ) ;
t i t l e ( ’ P iezometr i c Head Contours ’ , ’ FontSize ’ , 1 8 ) ;
ax = gca ;
ax . XTick = [−500 ,−400 ,−300 ,−200 ,−100 ,0 ,100 ,200 ,300 ,400 ,500] ;
ax . YTick = [−500 ,−400 ,−300 ,−200 ,−100 ,0 ,100 ,200 ,300 ,400 ,500] ;
c o l o rba r ;
hold o f f
end

IV.2 Λ Function

%%%%%%%% Lambda Function f o r Pro j e c t 4 %%%%%%%%
func t i on [ Lambda ] = Lambda(zm, zonej , ztwoj )
Lj = s q r t ( ( r e a l ( ztwoj)− r e a l ( zone j ) )ˆ2 + ( imag ( ztwoj)−imag ( zone j ) ) ˆ 2 ) ;
Zj = (zm − 0 . 5∗ ( ztwoj+zone j ) ) / ( 0 . 5 ∗ ( ztwoj − zone j ) ) ;
Lambda = ( Lj / (4∗3 . 14 ) )∗ r e a l ( ( Zj + 1)∗ l og ( Zj + 1) −
( Zj − 1)∗ l og ( Zj− 1)+2∗ l og ( Lj /2) − 2 ) ;
end

IV.3 φ Function

%%%%%%%% Phi Function f o r Pro j e c t 4 %%%%%%%%
func t i on [ phi ] = phi ( z , s , zone , ztwo , Qx0 , Qw, zw)
n = length ( s )−1;
Lambda = ze ro s (1 , n ) ;
f o r j =1:n
Lj = s q r t ( ( r e a l ( ztwo ( j ))− r e a l ( zone ( j ) ) ) ˆ 2 + ( imag ( ztwo ( j ))− imag ( zone ( j ) ) ) ˆ 2 ) ;
Zj = ( z − 0 . 5∗ ( ztwo ( j ) + zone ( j ) ) ) / ( 0 . 5 ∗ ( ztwo ( j ) − zone ( j ) ) ) ;
Lambda( j ) = ( Lj / (4∗3 . 14 ) )∗ r e a l ( ( Zj + 1)∗ l og ( Zj + 1) −
( Zj − 1)∗ l og ( Zj− 1)+2∗ l og ( Lj /2) − 2 ) ;
end
Phi = s ( l ength ( s ) ) − Qx0∗z + (Qw/(2∗3 . 14 ) )∗ l og ( ( z − zw ) ) ;
f o r j = 1 : n
Phi = r e a l ( Phi + Lambda( j )∗ s ( j ) ) ;
end
phi = s q r t (2∗Phi / 1 0 ) ;

IV.4 Ω Function

%%%%%%%% Complex Po t e n t i a l Function f o r Pro j e c t 4 %%%%%%%%
func t i on [ Omega ] = Omega( z , s , zone , ztwo , Qx0 , Qw, zw)
n = length ( s )−1;
Lambda = ze ro s (1 , n ) ;
f o r j =1:n
Lj = s q r t ( ( r e a l ( ztwo ( j ))− r e a l ( zone ( j ) ) ) ˆ 2 + ( imag ( ztwo ( j ))− imag ( zone ( j ) ) ) ˆ 2 ) ;
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Zj = ( z − 0 . 5∗ ( ztwo ( j ) + zone ( j ) ) ) / ( 0 . 5 ∗ ( ztwo ( j ) − zone ( j ) ) ) ;
Lambda( j ) = ( Lj / ( 4∗3 . 1 4 ) )∗ ( ( Zj + 1)∗ l og ( Zj + 1) −
( Zj − 1)∗ l og ( Zj− 1)+2∗ l og ( Lj /2) − 2 ) ;
end
Omega = s ( l ength ( s ) ) − Qx0∗z + (Qw/(2∗3 . 14 ) )∗ l og ( z−zw ) ;
f o r j = 1 : n
Omega = Omega + Lambda( j )∗ s ( j ) ;
end
end

IV.5 Flow Net Routine Function

f unc t i on [ Grid ] = P4Q1ContourMe flow net ( xfrom , xto , Nx, yfrom , yto , Ny, Omega , n int )
Grid = ze ro s (Ny,Nx ) ;
X = l i n s p a c e ( xfrom , xto , Nx ) ;
Y = l i n s p a c e ( yfrom , yto , Ny ) ;
f o r row = 1 :Ny

f o r c o l = 1 :Nx
Grid ( row , c o l ) = Omega( complex ( X( c o l ) , Y( row ) ) ) ;

end
end
Bmax=max( imag ( Grid ) ) ;
Bmin=min ( imag ( Grid ) ) ;
Cmax=max(Bmax ) ;
Cmin=min (Bmin ) ;
D=Cmax−Cmin ;
de l=D/ nint ;
Bmax=max( r e a l ( Grid ) ) ;
Bmin=min ( r e a l ( Grid ) ) ;
Cmax=max(Bmax ) ;
Cmin=min (Bmin ) ;
D=Cmax−Cmin ;
n i n t r=round (D/ de l ) ;
f i g u r e ;
hold on
contour (X, Y, r e a l ( Grid ) , n intr , ’ r ’ ) ;
contour (X, Y, imag ( Grid ) , nint , ’ b ’ ) ;
a x i s square
a x i s equal

IV.6 Piezometric Head Contour Routine Function

f unc t i on [ Grid ] = P4Q2ContourMe flow net ( xfrom , xto , Nx, yfrom , yto , Ny, Omega , n int )
Grid = ze ro s (Ny,Nx ) ;
X = l i n s p a c e ( xfrom , xto , Nx ) ;
Y = l i n s p a c e ( yfrom , yto , Ny ) ;
f o r row = 1 :Ny

f o r c o l = 1 :Nx
Grid ( row , c o l ) = Omega( complex ( X( c o l ) , Y( row ) ) ) ;

end
end
Bmax=max( imag ( Grid ) ) ;
Bmin=min ( imag ( Grid ) ) ;
Cmax=max(Bmax ) ;
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Cmin=min (Bmin ) ;
D=Cmax−Cmin ;
de l=D/ nint ;
Bmax=max( r e a l ( Grid ) ) ;
Bmin=min ( r e a l ( Grid ) ) ;
Cmax=max(Bmax ) ;
Cmin=min (Bmin ) ;
D=Cmax−Cmin ;
n i n t r=round (D/ de l ) ;
f i g u r e ;
hold on
contour (X, Y, s q r t (2∗ r e a l ( Grid )/10) , n in t r ) ;
a x i s square
a x i s equal
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