UNIVERSITY OF MINNESOTA: TWIN CITIES

CE 8351: ANALYTICAL MODELING IN CIVIL ENGINEERING

Project 3: Hodograph Method

Phreatic Surface Over Symmetric Lateral Trenches

Ot L0GSTON
April 128, 2015

Contents

3

4

Introduction . . . . . . . .

Verification of Solution . . . . . . . . . . . . e e

Q as a Direct Function of Parameters . . . . . . . . . . . .. ... ... ... ... ... ...

Flownets . . . . . . .

Discussion . . . . . . . .

A Matlab® Scripts . . . . . . . ..



0) Introduction

0.1) Scenario

As shown in figure 1, the case is presented in which a permeable region is bounded by two lateral drain
systems extending to +oo. Due to infiltration across a certain region, a phreatic surface forms above the
drains within the porous medium. Given that both the discharge potential and streamline along this surface
are variable, a free boundary exists. Therefore, previous methods of developing a flow-net along a vertical
plane of analysis (as shown) do not apply. However, given that the wells each act as points of inversion (where
¥ approaches +00), the hodograph method can be used as a substitute flow-net development technique.

phreatic surface

plane of analysis

Figure 1: Scenario under inspection



0.2) Setup

As shown in figure 2, the relevant properties within the physical analysis plane are as follows:

N: infiltration rate;

2b: region over which infiltration occurs;

L: distance between drains edges;

as well as k: the hydraulic conductivity of the porous medium.

Figure 2: Setup of physical flownet (z) plane

Also, several points are labeled that are of importance to the conformal mapping process carried out in the
Hodograph method. They are:

e points 1B and 1A, both drain extents at oco;

e points 5 and 3, the horizontal extents of the phreatic surface, aligned with x = —b and x = b respec-
tively;

e points 6 and 2, where the drains edges terminate.



0.3) Given Solution

As presented during the University of Minnesota, Twin Cities course CEGE 8351: Analytical Modeling in
Civil Engineering during the Spring, 2016 term by Professor Otto Strack, PhD, the complex potential for
this symmetric case in which both drains are at the same elevation is as follows:
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Where:

e both |A| and | B| are functions of hydraulic conductivity and infiltration:
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e ( is complex location in the (-plane where:

— horizontal (real) and vertical (imaginary) components are distinguished as:
¢=E&+1n (4)
— all locations can be re-mapped into the physical z-plane as follows:
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This solution is used to develop the flownets in both the ¢ and z planes in section 3.



1) Verification of Solution

As discussed in the development of the solution above, the following boundary conditions are set:

e streamline at point 3: ¥ ((3) = (=N)(b);
e streamline at point 5: ¥ ((5) = (—N)(-b);
e streamline at point 4: ¥ ({4) =0

e datall(=¢+0ifor{ < —1,£>1: R[Q] =

Given that 3 and 5 mark the points of inversion in the physical z-plane, their ¢ values are 1 and —1,

respectively. Thus their associated boundary conditions are checked using equation 1.

e Starting with point 3, where (3 = —1+ 07

— the stream line can expressed as:
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— and the boundary condition can be re-expressed using z = b + 0i as follows:
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e Continuing with point 5, where (5 = 1 + 0i

— the streamline can be expressed as:
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— and the boundary condition can be re-expressed using z = —b + 0i as follows:
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e Also, checking at point 4, where (4 = 0+ 07

— the streamline is checked:

¥ () =3[0 (G)] =3 |4l 0) Bl 5 O DO 1)

|
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— It should be noted that this verification assumes k& > N, wherein both |A| and |B| are only real.

e Finally, the complex potential along the following boundary is checked to be entirely imaginary, such
that ® = 0 throughout:

R[QE 4+ 0i)] =0 where £ < —1,& > 1

— regarding eq. 1, replacing ¢ with &, its only non-zero component:

Q=—i|A B -1 1
A&+l IN pVE-DE+D)
— it can be seen that for all £ < —1 and 5 > 1, all terms are imaginary:
N
[—2|A|§] ~0

R {ZBlNkk' (something > O)} =0

— both ® and ¥ are plotted for an array of ¢ values along this boundary range in figure 3.
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Figure 3: Boundary check in (-plane



— Figure 4 presents the same check in the z-plane.
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Figure 4: Boundary check in z-plane

e This verification process is coded in Matlab® as follows:

absolute)

1 % --- check boundary conditions --
2

3  tol = le-8; % error tolerance (

4

5 % --- point 3 ---

6 point_3_zeta = -1;

7 point_3_z = z_of_zeta( point_3_zeta, k, N ,abs_A,abs_B );

8 point_3_PSI = imag(Omega_of_zeta(point_3_zeta, k, N,abs_A,abs_B));

9  assert (abs(point_3_PSI - (-N*point_3_z)) < tol,’point 3 bc not met’);
10
11 % --- point 5 ---

12  point_5_zeta = 1;
13 point_5_z = z_of_zeta( point_5_zeta, k, N ,abs_A

,abs_B );

14 point_5_PSI = imag(Omega_of_zeta(point_5_zeta, k, N,abs_A,abs_B));
15 assert (abs(point_5_PSI - (-N*point_5_z)) < tol,’point 5 bc not met’);

17 % --- point 4 ---
18 point_4_zeta = complex(0,0);

19  point_4_PSI = imag(Omega_of_zeta(point_4_zeta, k, N,abs_A,abs_B));
20 assert (point_4_PSI < tol, ’point 4 bc not met’);

22 % --- left/right drain Phi =—=-=m=m o mm oo s oo

24  bext = 10; Y%boundary extent

25 zeta_left_of_negl = linspace(-bext,-1,10%bext);
26 zeta_right_of_posl = linspace( 1, bext,10%bext);
27 Omega_left_of_negl = zeros(l,bext);

28 Omega_right_of_posl = zeros(1l,bext);

30 for ii = 1:length(zeta_left_of_negl)

31 Omega_left_of_negl(ii) = Omega_of_zeta(zeta_left_of_negl(ii), k, N,abs_A,abs_B);
32 Omega_right_of_posi(ii) = Omega_of_zeta(zeta right_of_posi(ii), k, N,abs_A,abs_B);
33 assert (real (Omega_left_of_negl(ii)) == 0,’left drain phi bc not met’);
34 assert(real(Omega_right_of_pos1(ii)) == 0,’right drain phi bc not met’);

35 end




2) Q as a Direct Function of Parameters

Given that egs. 2 and 3 for |A| and |B] are expressed in terms of the parameters L, k and N, they can be
substituted into eq. 1 to develop a total function for Q = f (¢, L, k, N) as follows:
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3) Flownets

3.1) (¢ - plane

Figure 5 presents the flownet of the analysis plane mapped as Q = f({). It was developed by separately
contouring the real and imaginary portions of eq. 1 across a grid of ¢ shown by the figure axes. The
parameters used for the flow shown are:

e L =50m o k=11 e N=02"
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Figure 5: (-plane flownet



3.2) z - plane

Figure 6 presents the same complex discharge information as in figure 5 but mapped onto the physical z-
plane using eq. 5. This mapping matches with that shown in introductory figure 2. It should be noted that
in the (-plane, all positive and negative values of n have negative and positive x values, respectively, in the
z-plane. This is also the case for all £¢ having corresponding values of Fy.
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Figure 6: z-plane flownet



4) Discussion

This method allows for a flownet to be developed along the vertical cross section of the system of interest
when the phreatic surface behaves as a free boundary. While this lack of constraint poses a difficulty, it
allows the hodograph method to be used to develop a new complex potential equation as a function of the
anti-conformally mapped (.

As shown in figures 7 through 10, a greater N/k ratio causes the surface to “bulge” upwards, as expected.
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Figure 7: z-plane flownet for ¥/k = 0.1
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Figure 8: z-plane flownet for ¥/k = 0.25 Figure 10: z-plane flownet for ¥/k = 0.3

As shown in table 1, the infiltration-hydraulic

conductivity ratio N/k causes the phreatic sur- N/k Zs5 z3 2b

face width (2b) to increase as well. As mentioned 0.10 -25.1259 + 0i 25.1259 + 0i 50.2518

before, it should be noted that the limit of this 0.15 -25.2861 + 0i 25.2861 + 0i 50.5722

model is all cases for which the infiltration rate 020 -25.5155 4+ 0i  25.5155 + 0i  51.0310

exceeds hydraulic conductivity. 0.25 -25.8199 + 0i 25.8199 + 0i 51.6398
N 0.30 -26.2071 + 0i 26.2071 + 01  52.4142
n <1

10

Table 1: Affect of N on point 4 — 5 spacing
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A) Appendix

A.1) Master Script

clc

close all

clear all

% —-- given parameters - - - === - o -
L = 50; % length between drains [m]
k = 1; % hydraulic conductivity [m/day]
N = 0.2; % infilitration [m/day]
% --- preliminary Cales === - - === m - oo oo

abs_A= 0.5*%Lxk*sqrt (k-N)/sqrt (k+N);
abs_B= 0.5*%L*N*sqrt (k-N)/sqrt (k+N);

% --- check boundary conditions ====-==== === - - oo
tol = le-8; % error tolerance (absolute)
% --- point 3 ---

point_3_zeta = -1;

point_3_z = z_of_zeta( point_3_zeta, k, N ,abs_A,abs_B );

point_3_PSI = imag(Omega_of_zeta(point_3_zeta, k, N,abs_A,abs_B));
assert (abs(point_3_PSI - (-Nxpoint_3_z)) < tol,’point 3 bc not met’);

% --- point 5 ---

point_5_zeta = 1;

point_5_z = z_of_zeta( point_5_zeta, k, N ,abs_A,abs_B );

point_5_PSI = imag(Omega_of_zeta(point_5_zeta, k, N,abs_A,abs_B));
assert (abs(point_5_PSI - (-N*point_5_z)) < tol,’point 5 bc not met’);

% --- point 4 ---

point_4_zeta complex (0,0);

point_4_PSI = imag(Omega_of_zeta(point_4_zeta, k, N,abs_A,abs_B));
assert (point_4_PSI < tol, ’point 4 bc not met’);

% --- pre/post drain Phi —-===--=m - o - oo oo
bext = 10; Jboundary extent

zeta_left_of_negl = linspace(-bext,-1,10%bext);

zeta_right_of_posl = linspace(l, bext,10*bext);

Omega_left_of_negl = zeros(l,bext);

Omega_right_of_posl = zeros(1l,bext);

for ii = 1:length(zeta_left_of_negl)
Omega_left_of_negl(ii) = Omega_of_zeta(zeta_left_of_negl(ii), ...
k, N,abs_A,abs_B);
Omega_right_of_posi(ii) = Omega_of_zeta(zeta_right_of_posi(ii),

k, N,abs_A,abs_B);
0,’left drain phi bc not met’);
0,’right drain phi bc not met’);

assert(real (Omega_left_of_negl (ii))
assert(real (Omega_right_of_pos1(ii))
end

% --- zeta plane plot
figure; hold on; grid minor;
h1 = plot(zeta_left_of_negl,real(Omega_left_of_negl),’ -r’);
plot(zeta_right_of_posl,real(Omega_right_of_posl),’-r’);
plot(zeta_left_of _negl,imag(Omega_left_of_negl),’ -b’);
plot(zeta_right_of_postl,imag(Omega_right_of_posl),’-b’);
h3 = plot([-1 -1],[-20 20], :k’);
plot([ 1 11,[-20 20],’:k’)
xlabel (’\xi (where \eta = 0)’);
axis ([-bext, bext, -6, 61)
legend ([h1 h2 h3],{’\Phi =

h2 =

\Re (\Omega)’,’\Psi = \Im (\Omega)’,...

’drain extent’},’location’,’northeast’); hold off;
print (’103°,’-depsc2’,’-r300°);
% —== z plane plot —— - - - - - - oo

x_left_of_negl =
x_right_of_posl =

zeros (1,length(zeta_left_of_negl));
zeros (1,length(zeta_right_of_pos1));
for ii = 1:length(x_left_of_negl)

x_left_of _negl(ii) = z_of_zeta(zeta_left_of_negl (ii) , k, N ,abs_A,abs_B );
x_right_of_pos1(ii) = z_of_zeta(zeta_right_of_pos1(ii),k,N,abs_A,abs_B);

end
figure; hold on; grid minor;
hi = plot(x_left_of_negl, real(Omega_left_of_negl),’r’);

plot (x_right_of _posl,real(Omega_right_of_posl),’r’);
h2 = plot(x_left_of_negl, imag(Omega_left_of_negl),’b’);
plot (x_right_of_posl,imag(Omega_right_of_posl),’b’);
h3 = plot([z_of_zeta(l, k, N ,abs_A,abs_B ) ...

z_of_zeta(l, k, N,abs_A,abs_B )],[-20 201, :k’);

plot ([z_of_zeta(-1, k, N ,abs_A,abs_B ) ...

z_of _zeta(-1, k, N,abs_A,abs_B )],[-20 20],’:k’);
xlabel (’x (where y = 0)’);
axis ([-200 200 -6 6]1)
legend ([h1 h2 h3],{’\Phi =

\Re (\Omega)’,’\Psi = \Im (\Omega)’,.

drain extent’},’location’,’northeast’); hold off;
print (’104°,’-depsc2’,’-r300°);
% —== plot floWnet ——— == - - -
wind = 2.25;
Nxy = 300;
nint = 40;
ContourMe_flow_net (-wind, wind, Nxy, O , wind, Nxy,...

@(zeta)Omega_of_zeta( zeta, k, N,abs_A,abs_B),nint,k,N,abs_A,abs_B);

O ULA W
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A.2) Function Omega = f ((,k, N, |A|, |BJ)
function [ Omega_out] =

Omega_of_zeta( zeta, k, N,abs_A,abs_B)

-li*abs_AxN/(N-k)*zeta+...
lixabs_Bx*k/(N-k)*sqrt(zeta-1)*sqrt(zeta+1);

Omega_out =

A.3) Function z = f ({,k,N,|A|,|B|)

function [ z_out ] = z_of_zeta( zeta, k, N ,abs_A,abs_B )

z_out = -abs_Axzeta/(k-N) + abs_B/(k-N)*sqrt(zeta-1)*sqrt(zeta+1);

end



© 00N U W

A.4) Contouring Routine

functi

if Nx
disp(’
end

Grid =
X_zeta
Y_zeta
zeta =

for ro
fo
en

end

Bmax=m

D=Cmax
del=D/
Bmax=m

Bmi

Cmax=m
Cmin=m
D=Cmax
nintr=

PR
figure
contou:
contou:
xlabel

h3_zet
hp5_ze
hp3_ze
hp4_ze

axis ([

hi_zet
h2_zet

gridle
{’equi

hold o

A
zz = z
for ro

fo

en
end

figure
contou
contou:

P
zeta_p
zz_phr

for kk
zz_phr
end

h3_z =

-
point_
point_
point_
point_
point_

A

axis ([

hi_z =
h2_z =
xlabel

gridlLe
O
P

hold o

end

on [Grid,zz] = ContourMe_flow_net(xfrom, xto, Nx, yfrom, yto, Ny,...
func ,nint ,k,N,abs_A,abs_B)

-~y

z from zeta transformation assumes same quanity of Nx and Ny’);

zeros (Ny,Nx) ;
= linspace(xfrom, xto, Nx);
= linspace(yfrom, yto, Ny);
zeros (Nx,Ny) ;

w o= 1:Ny
r col = 1:Nx
Grid(row,col) = func(complex( X_zeta(col), Y_zeta(row)));
zeta(row,col) = complex(X_zeta(col),Y_zeta(row));
d

ax (imag(Grid));

~Cmin;
nint;
ax(real(Grid));
in(real(Grid));
ax (Bmax) ;
in(Bmin) ;
-Cmin;
round(D/del);

zeta plane floW MeL —=—————- - = - - - oo
; hold on; axis square; axis equal; grid minor

r(X_zeta, Y_zeta,real(Grid),nintr,’r’)

r(X_zeta, Y_zeta,imag(Grid),nint,’b’);

(’\xi’); ylabel(’\eta’,’rot’,0);

a = plot([xfrom xtol,[0 0],’-k’,’linewidth’,3)

ta plot (1,0, ro’, linewidth’,3);
ta = plot(-1,0,’bo’, linewidth’,3);
ta = plot (0,0, ’go’, linewidth’,3);

xfrom, xto, -0.2, ytol);

a = plot(NaN,NaN,’ -r’);
a = plot(NaN,NaN,’ -b’);

gend ([h1_zeta h2_zeta h3_zeta hp3_zeta hp4_zeta hp5_zetal,2,
potentials’,’streamlines’,’phreatic surface’,...
’point 3’,’point 4’,’point 5°});

ff; print(’101°’,’-depsc2’,’-r300°);

2 plane £lOWNEt ======== === === oo e
eros (Nx,Ny);
w = 1:Ny
r col = 1:Nx
zz(row,col) = z_of_zeta(zeta(row,col), k, N, abs_A,abs_B );
d

; hold onj; axis square; axis equal; grid minor
r(real(zz), imag(zz),real(Grid),nintr,’r’);
r(real(zz), imag(zz),imag(Grid),nint,’b’);

phreatic surface - -
hreatic = linspace(xfrom,xto,100000);
eatic = zeros(1l,length(zeta_phreatic));

= 1:length(zz_phreatic)
eatic(kk) = z_of_zeta( zeta_phreatic(kk), k, N, abs_A,abs_B ) ;

plot (real(zz_phreatic),imag(zz_phreatic),’-k’,’linewidth’,2);

points of interest —-—-—-— - - - - - mm oo
3_zeta = -1;

5_zeta = 1;

3_z = z_of_zeta( point_3_zeta, k, N ,abs_A,abs_B );

5_z = z_of_zeta( point_5_zeta, k, N ,abs_A,abs_B );

4.z = z_of_zeta( complex(0,0), k, N ,abs_A,abs_B );

= plot(real(point_5_z),imag(point_5_z),’ro’,’linewidth’,3)
= plot(real(point_3_z),imag(point_3_z),’bo’,’linewidth’,3)
= plot(real(point_4_z),imag(point_4_z),’go’,’linewidth’,3)

axis and legend
z_of_zeta(xto , k, N, abs_A,abs_B ).
z_of_zeta(xfrom, k, N, abs_A,abs_B  )...

0.9%xz_of_zeta(yto , k, N, abs_A,abs_B ) 10]1);

plot (NaN,NaN, -r’);

plot (NaN,NaN,’ -b’);

(’x’); ylabel(’y’,’rot’,0);
gend([hi_z h2_z h3_z hp3_z hp4_z hp5_z],2,..
equipotentials’,’streamlines’,’phreatic surface’,

oint 3’,’point 4’,’point 5°});

££; print(’102°,’-depsc2’,’-1300°);
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